
AN LLVM INSTRUMENTATION PLUG-IN
FOR SCORE-P

Performance: an old problem

An LLVM Instrumentation Plug-in for Score-P 2

“The most constant difficulty in contriving the

engine has arisen from the desire to reduce

the time in which the calculations were

executed to the shortest which is possible.”

Charles Babbage
1791 – 1871

Difference Engine

November 13, 2017

• Monitoring infrastructures that capture performance relevant data
during application execution

Performance Analysis

An LLVM Instrumentation Plug-in for Score-P 3November 13, 2017

Monitor Application

Agenda

An LLVM Instrumentation Plug-in for Score-P 4

• Methodology

• Implementation

• Case Study

• Conclusion

November 13, 2017

• Source code annotations (hooks)

• Hooks invoke the monitor

Source Code Instrumentation

Methodology

An LLVM Instrumentation Plug-in for Score-P 5November 13, 2017

Methodology

void func(int i)

{

if (i>0)

{

func(i-1);

}

}

void func (int i)

{

if (i>0)

{

func(i-1);

}

}

An LLVM Instrumentation Plug-in for Score-P 6

ENTER ("func");

EXIT ("func");

November 13, 2017

Instrumentation techniques

• Manual

• Automatic

• Compiler instrumentation (e.g., Clang option -finstrument-functions)

• LLVM compiler pass

Methodology

An LLVM Instrumentation Plug-in for Score-P 7November 13, 2017

Requirements

• Instrumentation of function enter and exit events

• Independence from the programming language of the source code

• Support of filtering options both at compile time and runtime

• Support for user defined filter rules

• Avoid interference with optimizations applied by the compiler

• Internal handling of meta data

• Exception-aware instrumentation

Methodology

An LLVM Instrumentation Plug-in for Score-P 8November 13, 2017

• Implementation of a FunctionPass using
the LLVM Pass Framework

• Invoked for each application function

• Insert hooks into the LLVM
Intermediate Representation (IR)

• Applying filtering techniques in order to
realize selective function instrumentation
at compile-time

Methodology

An LLVM Instrumentation Plug-in for Score-P 9

Portion of the LLVM IR relevant
for this work

November 13, 2017

• LLVM pass implementation to ensure independence from the
programming language of the source code

• Integration in the Score-P monitoring infrastructure

Implementation

An LLVM Instrumentation Plug-in for Score-P 10

Overview of the Score-P monitoring
infrastructure and related analysis tools

LLVM infrastructure overview

November 13, 2017

Override virtual method runOnFunction(Function &F) which is called for
each function in the processed IR

• Collecting meta data

• Deciding whether a function is instrumented

• Default filtering rules

• User defined filtering rule set

• Adding calls to the monitoring infrastructure

Implementation

An LLVM Instrumentation Plug-in for Score-P 11November 13, 2017

FUNCTION :

static uint32_t handle = INVALID_REGION ;

if (handle == INVALID_REGION) register_region(&descr);

if (handle != FILTERED_REGION) enter_region(handle);

try {

/* FUNCTION BODY */

}

finally {

if (handle != FILTERED_REGION) exit_region(handle);

}

Implementation

An LLVM Instrumentation Plug-in for Score-P 12November 13, 2017

Instrumentation plug-in usage

• Pass is built as a shared library

• Compiler loads this shared library to enable instrumentation at
compile-time

• LLVM pass registry manages registration and initialization of the pass
subsystem at compiler startup

clang -Xclang –load -Xclang <instrumenation_pass_library.so>

-c main.c

Implementation

An LLVM Instrumentation Plug-in for Score-P 13November 13, 2017

Comparison of event sequences

• Instrumentation of a Jacobi solver application (MPI+OpenMP) with

• Automatic compiler instrumentation

• LLVM instrumentation plug-in

Case Study

An LLVM Instrumentation Plug-in for Score-P 14November 13, 2017

Case Study – Comparison of Event Sequences

An LLVM Instrumentation Plug-in for Score-P 15

Timeline visualization of the recorded event sequence in Vampir

November 13, 2017

Overview of
all processes/

threads

Call stack of
an individual

thread

Detailed
information

about
message
transfer

• Number of user function invocations over all processing elements

Case Study – Comparison of Event Sequences

An LLVM Instrumentation Plug-in for Score-P 16

Number of user function
invocations

Optimization level Automatic
compiler
instrumentation

Instrumentation
via plug-in

-O0 2014 2014

-O1 2014 2014

-O2 2014 2010

-O3 2014 2008

November 13, 2017

Case Study – Comparison of Event Sequences

An LLVM Instrumentation Plug-in for Score-P 17

Call stack visualization of the Jacobi application compiled with different optimization levels

November 13, 2017

Functions
inlined in
higher

optimization
levels

Functions
inlined in
higher

optimization
levels

Comparison of runtime overheads

• Instrumentation of the miniFE application (OpenMP) with

• Automatic compiler instrumentation

• LLVM instrumentation plug-in

Case Study

An LLVM Instrumentation Plug-in for Score-P 18November 13, 2017

Experiment Runtime in seconds

Uninstrumented 6

Automatic compiler instrumentation 800

Automatic compiler instrumentation,
runtime filter

140

Instrumentation via plug-in 27

Instrumentation via plug-in,
compile-time filter

7

Case Study - Comparison of Runtime Overheads

An LLVM Instrumentation Plug-in for Score-P 19

• Runtime in seconds of the miniFE experiments

• Each experiment was executed three times, the minimum of these
runs is shown

November 13, 2017

Conclusion

An LLVM Instrumentation Plug-in for Score-P 20

• LLVM plug-in supporting

• Exception-aware instrumentation

• Selective instrumentation of specific functions at compile-time

• Runtime filtering

• Feedback

• Transferring additional information from the Front-End to the
Optimizer (source code location, demangled function names,
mark internal functions)

November 13, 2017

