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OpenMP GPU Offloading

• GPU is increasingly important in HPC
• Massive threading capability
• Energy efficient

• OpenMP 4.X offers GPU programming ability
• Compared with native models (CUDA, OpenCL)

• Easy to learn, better performance portability

• Compared with other directive based models 
(e.g., OpenACC)

• Boarder user community, better compiler support

We expect more developers will use OpenMP to 
program GPUs



Unified Memory

• Recent GPU architectures introduce enhanced 
support for unified memory

• CPU and GPU use a single unified address space
• On-demand page migration, cache coherence in Volta

• Unified memory facilitates GPU programming
• Simplify hierarchical data structure copy (deep copy)
• Enable GPU memory oversubscription

• No comprehensive study for unified memory yet

This paper aims to study the performance of 
unified memory under OpenMP



Key Problems

• Little effort has been put into OpenMP GPU 
offloading benchmarking

• There is no official unified memory support in the 
current OpenMP yet

2. Need to implement a lightweight way to 
support unified memory for the current OpenMP

1. Need to develop a set of OpenMP GPU 
benchmarks for performance evaluation



• Modify Rodinia benchmarks
for OpenMP offloading

OpenMP Offloading without 
Unified Memory

Map computation

Map data



OpenMP Offloading with Unified 
Memory

• Challenge 1: GPU memory allocation is not done in 
the unified memory space

• Solution: modify omp_target_alloc to allocate data in unified 
memory space

• Challenge 2: OpenMP runtime transfers data explicitly
• Solution: use is_device_ptr to let OpenMP runtime step 

down from memory management

Only modification
needed for LLVM



Example

• Implement both traditional
offloading and unified memory
versions for most benchmarks

Data allocation

Let unified memory
driver to manage
data movement



Deep Copy & Unified Memory

• Hierarchical data structure mapping
• Map the current instances and all 

indirectly referenced data
• Programmers’ burden
• Time consuming, error prone

• TR6 will introduce custom mapper
• Alleviate deep copy

• Unified memory solves deep copy (perfectly?)
• Indirectly referred data are moved on demand



Experimental Methodology

• Hardware
• SummitDev @ ORNL
• Tesla P100 NVLink
• POWER 8

• Software
• IBM Clang/LLVM with OpenMP

GPU offloading support
• CUDA 8.0

• Benchmarks
• Backprop, BFS, CFD, K-means, NN, SRAD
• https://gitlab.com/alokmishra.besu/rodinia_benchmark
• Evaluate performance with different input sizes



Performance Results:
CPU vs. GPU

• Computational bound benchmarks prefer GPU
• Memory bound benchmarks prefer CPU

• Most time is used to transfer data between CPU and GPU



Performance Results:
GPU w/o UM vs. GPU w/ UM (1)

• Group 1: benchmarks with lots of data reuse
• On demand paging amortizes data movement overhead
• Unified memory suffers from significant performance degradation 

when GPU memory is oversubscribed



Performance Results:
GPU w/o UM vs. GPU w/ UM (2)

• Group 2: benchmarks with little data reuse
• The performance is roughly proportional to input size
• GPU w/o UM performs slightly better thanks to lower runtime 

overhead



Unified Memory Analysis

• Time breakdown

• Data transfer

The overhead of Group 1 increases significantly 
in case of memory oversubscription

On demand paging introduces extra overhead

Group 1     Group 2

Data thrashing!



Improve Unified Memory 
Performance

• Applications with significant data reuse
• Avoid/reduce data thrashing
• Pin data with good locality into GPU memory
• Pinned data cannot be thrashed by poor locality data
• Use traditional data mapping to achieve this

• Applications with little data reuse
• Reduce the runtime overhead associated with unified 

memory: page faults, on demand data transfer, …
• Use prefetching (e.g., cudaMemPrefetchAsync)



Conclusion

• Unified memory has many advantages
• Enable GPU memory oversubscription
• Address deep copy well
• Ease to use under the current/future OpenMP standard

• Applications with little reuse
• Unified memory performs slightly worse
• Reduce on demand paging overhead

• Applications with large amounts of reuse
• Unified memory can bring better performance
• Be aware of data thrashing under memory oversubscription

• Benchmarks are available @ 
https://gitlab.com/alokmishra.besu/rodinia_benchmark



Thanks!
Questions?

• Supported by ECP SOLLVE (OpenMP project)

• Find more about SOLLVE
• Martin Kong’s talk at OpenMP booth (1246), 11:15am, 

Wednesday
• Barbara Chapman’s talk at DOE booth (613), 2:30pm, 

Wednesday

• Find more about unified memory and OpenMP
• Lingda Li’s demo at DOE booth (613), 4:00pm, 

Wednesday


