
Benchmarking and Evaluating
Unified Memory for OpenMP
GPU Offloading

Alok Mishra1, Lingda Li2, Martin Kong2, Hal Finkel3, Barbara Chapman1,2

1Stony Brook University
2Brookhaven National Laboratory
3Argonne National Laboratory

Nov 13th, 2017

LLVM-HPC 2017, Denver, CO

Benchmarking and Evaluating
Unified Memory for OpenMP
GPU Offloading

Alok Mishra1, Lingda Li2, Martin Kong2, Hal Finkel3, Barbara Chapman1,2

1Stony Brook University
2Brookhaven National Laboratory
3Argonne National Laboratory

Nov 13th, 2017

LLVM-HPC 2017, Denver, CO

Important points

Detailed contents

OpenMP GPU Offloading

• GPU is increasingly important in HPC
• Massive threading capability
• Energy efficient

• OpenMP 4.X offers GPU programming ability
• Compared with native models (CUDA, OpenCL)

• Easy to learn, better performance portability

• Compared with other directive based models
(e.g., OpenACC)

• Boarder user community, better compiler support

We expect more developers will use OpenMP to
program GPUs

Unified Memory

• Recent GPU architectures introduce enhanced
support for unified memory

• CPU and GPU use a single unified address space
• On-demand page migration, cache coherence in Volta

• Unified memory facilitates GPU programming
• Simplify hierarchical data structure copy (deep copy)
• Enable GPU memory oversubscription

• No comprehensive study for unified memory yet

This paper aims to study the performance of
unified memory under OpenMP

Key Problems

• Little effort has been put into OpenMP GPU
offloading benchmarking

• There is no official unified memory support in the
current OpenMP yet

2. Need to implement a lightweight way to
support unified memory for the current OpenMP

1. Need to develop a set of OpenMP GPU
benchmarks for performance evaluation

• Modify Rodinia benchmarks
for OpenMP offloading

OpenMP Offloading without
Unified Memory

Map computation

Map data

OpenMP Offloading with Unified
Memory

• Challenge 1: GPU memory allocation is not done in
the unified memory space

• Solution: modify omp_target_alloc to allocate data in unified
memory space

• Challenge 2: OpenMP runtime transfers data explicitly
• Solution: use is_device_ptr to let OpenMP runtime step

down from memory management

Only modification
needed for LLVM

Example

• Implement both traditional
offloading and unified memory
versions for most benchmarks

Data allocation

Let unified memory
driver to manage
data movement

Deep Copy & Unified Memory

• Hierarchical data structure mapping
• Map the current instances and all

indirectly referenced data
• Programmers’ burden
• Time consuming, error prone

• TR6 will introduce custom mapper
• Alleviate deep copy

• Unified memory solves deep copy (perfectly?)
• Indirectly referred data are moved on demand

Experimental Methodology

• Hardware
• SummitDev @ ORNL
• Tesla P100 NVLink
• POWER 8

• Software
• IBM Clang/LLVM with OpenMP

GPU offloading support
• CUDA 8.0

• Benchmarks
• Backprop, BFS, CFD, K-means, NN, SRAD
• https://gitlab.com/alokmishra.besu/rodinia_benchmark
• Evaluate performance with different input sizes

Performance Results:
CPU vs. GPU

• Computational bound benchmarks prefer GPU
• Memory bound benchmarks prefer CPU

• Most time is used to transfer data between CPU and GPU

Performance Results:
GPU w/o UM vs. GPU w/ UM (1)

• Group 1: benchmarks with lots of data reuse
• On demand paging amortizes data movement overhead
• Unified memory suffers from significant performance degradation

when GPU memory is oversubscribed

Performance Results:
GPU w/o UM vs. GPU w/ UM (2)

• Group 2: benchmarks with little data reuse
• The performance is roughly proportional to input size
• GPU w/o UM performs slightly better thanks to lower runtime

overhead

Unified Memory Analysis

• Time breakdown

• Data transfer

The overhead of Group 1 increases significantly
in case of memory oversubscription

On demand paging introduces extra overhead

Group 1 Group 2

Data thrashing!

Improve Unified Memory
Performance

• Applications with significant data reuse
• Avoid/reduce data thrashing
• Pin data with good locality into GPU memory
• Pinned data cannot be thrashed by poor locality data
• Use traditional data mapping to achieve this

• Applications with little data reuse
• Reduce the runtime overhead associated with unified

memory: page faults, on demand data transfer, …
• Use prefetching (e.g., cudaMemPrefetchAsync)

Conclusion

• Unified memory has many advantages
• Enable GPU memory oversubscription
• Address deep copy well
• Ease to use under the current/future OpenMP standard

• Applications with little reuse
• Unified memory performs slightly worse
• Reduce on demand paging overhead

• Applications with large amounts of reuse
• Unified memory can bring better performance
• Be aware of data thrashing under memory oversubscription

• Benchmarks are available @
https://gitlab.com/alokmishra.besu/rodinia_benchmark

Thanks!
Questions?

• Supported by ECP SOLLVE (OpenMP project)

• Find more about SOLLVE
• Martin Kong’s talk at OpenMP booth (1246), 11:15am,

Wednesday
• Barbara Chapman’s talk at DOE booth (613), 2:30pm,

Wednesday

• Find more about unified memory and OpenMP
• Lingda Li’s demo at DOE booth (613), 4:00pm,

Wednesday

