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Overview

❖ Introducing an “upstream-able” data sharing scheme for 
CLANG/LLVM trunk.

❖ We cover only the first level of sharing: from one thread to 
the rest of the threads in the same OpenMP team.

❖ Overcoming the problem that:

“In certain use cases, OpenMP’s default sharing of local 
variables is incompatible with the default allocation into 

local memory of local variables on NVIDIA GPUs.”
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Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

OpenMP allows nesting of regions with different numbers of threads.



Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

OpenMP
semantics



Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

We need to
share “c”



Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

Default NVPTX 
backend policy:
“c” is allocated 
onto the thread 

local stack



Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

On GPUs threads cannot share a variable allocated on the local stack.

Default NVPTX 
backend policy:
“c” is allocated 
onto the thread 

local stack



Function outlining
❖ In general: OpenMP regions delimited by different 

constructs will be outlined. 
❖ The master thread assigns those regions to workers 

dynamically: we therefore avoid dynamic thread launch 
in favor of dynamic work allocation to existing threads.

❖ Outlining ensures that all parallel OpenMP regions have 
access to all the worker threads including OpenMP regions 
that are defined in other compilation units.

❖ Data must be shared across multiple functions.
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OpenMP outlined regions example
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void test(){

  int c = 5000;
  #pragma omp target
  {
    c += 1;

    #pragma omp parallel for
    for (i) {
      A[i] = c * i;
    }

    c += 2;
  }
}

MASTER

WORKERS

MASTER



Changes to CLANG and the runtime

❖ The runtime maintains a list of references to the shared 
variables.

❖ The MASTER region needs to initialize this list.
❖ The WORKER region retrieves the list from the runtime and 

passes the arguments to the outlined parallel region (in the 
expected order).
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Code generation for MASTER (1)
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define void @KERNEL(i32* dereferenceable(4) %c){

entry:

  %c.addr = alloca i32*, align 8

  %shared_args = alloca i8**, align 4

  br i1 %1, label %.worker, label %.mastercheck

.worker:

  call void @WORKER()

  br label %.exit

.mastercheck:

  br i1 %5, label %.master, label %.exit

.master:

… [only master thread left] LLVM-IR



Code generation for MASTER (2)
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…

.master:

  call void @__kmpc_kernel_init(i32 %thread_limit6)

  call void @__kmpc_kernel_prepare_parallel(

[…], i8*** %shared_args, i32 1)

  %17 = load i8**, i8*** %shared_args, align 8

  %22 = getelementptr inbounds i8*, i8** %17, i64 0

  %23 = bitcast i32* %1 to i8*

  store i8* %23, i8** %22, align 8 

  call void @llvm.nvvm.barrier0()

  call void @llvm.nvvm.barrier0()

… LLVM-IR



Code generation for WORKER (1)
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define void @WORKER(i32* dereferenceable(4) %c){

entry:

  %shared_args = alloca i8**, align 8

  br label %.await.work

.await.work:

  call void @llvm.nvvm.barrier0()

  %0 = call i1 @__kmpc_kernel_parallel(

i8** %work_fn, i8*** %shared_args)

.execute.parallel:

  %5 = load i8**, i8*** %shared_args, align 8

  call void @__omp_outlined___wrapper(

i16 0, i32 %master_tid, i8** %5) LLVM-IR



Code generation for WORKER (2)
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define void @__omp_outlined___wrapper(…, i8**){

entry:

  %c.addr = alloca i32*, align 8

  store i8** %2, i8*** %.addr2, align 8

next:

  %3 = load i8**, i8*** %.addr2, align 8

  %10 = getelementptr inbounds i8*, i8** %3, i64 0

  %11 = bitcast i8** %10 to i32**

  %12 = load i32*, i32** %11, align 8

  call void @__omp_outlined(…, i32* %12)

  ret void

} LLVM-IR



Mapping OpenMP to GPUs
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void test(){

  int c = 5000;
  #pragma omp target
  {
    c += 1; // LLVM-IR: %c = alloca i32

    #pragma omp parallel for
    for (i) {
      A[i] = c * i;
    }

    c += 2;
  }
}

allocated in the
MASTER thread’s

local memory by default,
BUT

must now be
“shareable”

with the WORKERS!

1. In the CUDA model shared variables must be  explicitly declared as __shared__.
2. On a GPU, variables allocated in local memory cannot be shared.



Global Memory

Shared Memory Shared Memory Shared Memory

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

1. No Sharing



Global Memory

Shared Memory Shared Memory Shared Memory

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

2. Use device shared memory

Runtime managed



Detecting implicitly shared variables

❖ Detecting shared variables:
• Since sharing is supposed to happen implicitly, we need to detect the situation 

in which a variable is shared.
• A variable is considered shared if its address is stored.
• Avoids passing data from CLANG to LLVM backend about which variables are 

shared.
• Limitation: too conservative, might end up sharing more than needed.
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Local stack
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❖ Currently only a local stack is used which resides in the prolog of the the function. It 
uses:
• SP for generic address space operations.
• SPL for local address space operations.

kernel() {
.local  .align 8 .b8 __local_depot[10]

mov.u64         %SPL, __local_depot
cvta.local.u64  %SP, %SPL

add.u64         %rd1, %SPL, 8
ld.local.u64   %rd2, [%rd1]
…
}         PTX



Add a shared stack
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❖ Extend lowering of alloca’s to shared memory using SPSH for 
shared address space operations.
kernel() {
.local  .align 8 .b8 __local_depot[10]
.shared .align 8 .b8 __shared_depot[10]

mov.u64         %SPL, __local_depot
mov.u64         %SPSH, __shared_depot
cvta.local.u64  %SP, %SPL
cvta.shared.u64 %SP, %SPSH

add.u64         %rd1, %SPSH, 8
ld.shared.u64   %rd2, [%rd1]
…
}         PTX



NVPTX backend passes
❖ LowerSharedFrameIndices (new pass for all optimization levels):

• For -O0 insert before stack slot allocation.
• For -O1 or higher insert before StackColoring pass:

- ensures correctness of the stack slot coloring algorithm. Without this, the same local stack 
slot may be used by both a local and a shared variable. The StackColoring pass works on 
frame indices only. 

• Lowers frame indices to use the shared stack pointer SPSH.
• Limitation: uses the same offsets as the local stack frame hence the shared and local stack 

frames have the same size.
• Only lowers frame indices which fulfill the following condition:
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%vreg25<def> = LEA_ADDRi64 <fi#3>, 0;
%vreg6<def> = cvta_to_shared_yes_64 %vreg25<kill>;

%vreg25<def> = LEA_ADDRi64 %VRShared, 32; MI

MI

MI = Machine Instruction



NVPTX backend passes
❖ LowerAlloca (for -O1 or higher):

• Currently: inserts instructions to that convert between the generic and local address 
spaces.

• Add: conversion between generic and shared address spaces - the decision to lower to 
different address spaces needs to happen at the same time for all address spaces.

❖ FunctionDataSharing (New pass for -O0):
• conversion between generic and shared address spaces

❖ The NVPTXInferAddressSpaces will do the actual lowering by coupling last two instructions
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%A = alloca i32
store i32 0, i32* %A ; emits st.u32

%A = alloca i32
%Shared = addrspacecast i32* %A to i32 addrspace(3)*
%Generic = addrspacecast i32 addrspace(3)* %A to i32*
; the following instruction emits: st.shared.u32
store i32 0, i32 addrspace(3)* %Generic LLVM-IR

LLVM-IR



Performance - data volume

❖ When sharing variables, the shared memory volume that the 
scheme requires is relatively low.

❖ In most cases register usage becomes a problem before 
data sharing does.
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Performance - data volume

❖ Sharing arrays does not increase register pressure.
❖ Shared memory usage can limit occupancy in this case.
❖ Shared memory is not enough …
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Limitations & future work
❖ Limitations of the new data sharing scheme:

• No communication from CLANG to LLVM about OpenMP: 
CUDA and OpenMP offloading share the same toolchain, 
distinguish between the two.

• Shared memory is limited: adopt one of the more generic 
sharing alternatives for cases in which shared memory is 
insufficient or inefficient due to occupancy.

• Support for recursive functions
• Support second level of sharing among WORKERS: 

currently the new data sharing infrastructure only supports 
sharing from MASTER to WORKERS.

❖ These limitations do not apply to the current data sharing scheme.
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Future work: sharing among workers
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void test(){
  int c = 5000;
  #pragma omp target
  {
    c += 1;
    #pragma omp parallel for
    for (i) {
      int d;
      d = c * i;
      #pragma omp simd
      for (j) {
         B[j] = d * j;
      }
    }
    c += 2;
  }
}



Putting it all together
❖ Addition of a shared memory scheme compatible with the 

current code generation scheme:
• we modified the runtime to share values from MASTER to 

WORKER threads.
• we modified CLANG’s code generation to support our 

data sharing convention.
❖ Sharing relies on variables being stored in a “shareable” 

memory address space on the device:
• we modified LLVM’s NVPTX Backend to support the 

lowering of shared variables to the GPU’s shared 
memory.
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Thank you for listening! 
Questions?



Changes to LLVM’s NVPTX Backend
• There are 4 alternative ways for lowering a shared variable: 

1.lower alloca to local memory - no sharing needed; 

2.lower alloca to shared memory - one instance of the 
shared variable per team, store variable in shared 
memory stack, limited by shared memory size; 

3.lower alloca to global memory - one instance per team 
but in global memory, no more team-level management 
of the variable, vulnerable to recursive functions; 

4.lower alloca to runtime-managed memory - use a global 
memory stack managed by the runtime, supports all 
cases, interactions with runtime are expensive.
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