
IBM TJ Watson Research Center - Advanced Compiler Technologies

Implementing implicit
OpenMP data sharing on
GPUs

Gheorghe-Teodor Bercea

IBM Research

Team:
Gheorghe-Teodor (Doru) Bercea, Carlo
Bertolli, Hyojin Sung, Arpith C. Jacob,
Alexandre Eichenberger, Georgios Rokos,
Alexey Bataev, Tong Chen, Kevin O’Brien.

Overview

❖ Introducing an “upstream-able” data sharing scheme for
CLANG/LLVM trunk.

❖ We cover only the first level of sharing: from one thread to
the rest of the threads in the same OpenMP team.

❖ Overcoming the problem that:

“In certain use cases, OpenMP’s default sharing of local
variables is incompatible with the default allocation into

local memory of local variables on NVIDIA GPUs.”

2

Mapping OpenMP to GPUs

3

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

OpenMP allows nesting of regions with different numbers of threads.

Mapping OpenMP to GPUs

4

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

OpenMP
semantics

Mapping OpenMP to GPUs

5

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

We need to
share “c”

Mapping OpenMP to GPUs

6

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

Default NVPTX
backend policy:
“c” is allocated
onto the thread

local stack

Mapping OpenMP to GPUs

7

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

On GPUs threads cannot share a variable allocated on the local stack.

Default NVPTX
backend policy:
“c” is allocated
onto the thread

local stack

Function outlining
❖ In general: OpenMP regions delimited by different

constructs will be outlined.
❖ The master thread assigns those regions to workers

dynamically: we therefore avoid dynamic thread launch
in favor of dynamic work allocation to existing threads.

❖ Outlining ensures that all parallel OpenMP regions have
access to all the worker threads including OpenMP regions
that are defined in other compilation units.

❖ Data must be shared across multiple functions.
8

OpenMP outlined regions example

9

void test(){

 int c = 5000;
 #pragma omp target
 {
 c += 1;

 #pragma omp parallel for
 for (i) {
 A[i] = c * i;
 }

 c += 2;
 }
}

MASTER

WORKERS

MASTER

Changes to CLANG and the runtime

❖ The runtime maintains a list of references to the shared
variables.

❖ The MASTER region needs to initialize this list.
❖ The WORKER region retrieves the list from the runtime and

passes the arguments to the outlined parallel region (in the
expected order).

10

Code generation for MASTER (1)

11

define void @KERNEL(i32* dereferenceable(4) %c){

entry:

 %c.addr = alloca i32*, align 8

 %shared_args = alloca i8**, align 4

 br i1 %1, label %.worker, label %.mastercheck

.worker:

 call void @WORKER()

 br label %.exit

.mastercheck:

 br i1 %5, label %.master, label %.exit

.master:

… [only master thread left] LLVM-IR

Code generation for MASTER (2)

12

…

.master:

 call void @__kmpc_kernel_init(i32 %thread_limit6)

 call void @__kmpc_kernel_prepare_parallel(

[…], i8*** %shared_args, i32 1)

 %17 = load i8**, i8*** %shared_args, align 8

 %22 = getelementptr inbounds i8*, i8** %17, i64 0

 %23 = bitcast i32* %1 to i8*

 store i8* %23, i8** %22, align 8

 call void @llvm.nvvm.barrier0()

 call void @llvm.nvvm.barrier0()

… LLVM-IR

Code generation for WORKER (1)

13

define void @WORKER(i32* dereferenceable(4) %c){

entry:

 %shared_args = alloca i8**, align 8

 br label %.await.work

.await.work:

 call void @llvm.nvvm.barrier0()

 %0 = call i1 @__kmpc_kernel_parallel(

i8** %work_fn, i8*** %shared_args)

.execute.parallel:

 %5 = load i8**, i8*** %shared_args, align 8

 call void @__omp_outlined___wrapper(

i16 0, i32 %master_tid, i8** %5) LLVM-IR

Code generation for WORKER (2)

14

define void @__omp_outlined___wrapper(…, i8**){

entry:

 %c.addr = alloca i32*, align 8

 store i8** %2, i8*** %.addr2, align 8

next:

 %3 = load i8**, i8*** %.addr2, align 8

 %10 = getelementptr inbounds i8*, i8** %3, i64 0

 %11 = bitcast i8** %10 to i32**

 %12 = load i32*, i32** %11, align 8

 call void @__omp_outlined(…, i32* %12)

 ret void

} LLVM-IR

Mapping OpenMP to GPUs

15

void test(){

 int c = 5000;
 #pragma omp target
 {
 c += 1; // LLVM-IR: %c = alloca i32

 #pragma omp parallel for
 for (i) {
 A[i] = c * i;
 }

 c += 2;
 }
}

allocated in the
MASTER thread’s

local memory by default,
BUT

must now be
“shareable”

with the WORKERS!

1. In the CUDA model shared variables must be explicitly declared as __shared__.
2. On a GPU, variables allocated in local memory cannot be shared.

Global Memory

Shared Memory Shared Memory Shared Memory

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

1. No Sharing

Global Memory

Shared Memory Shared Memory Shared Memory

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

2. Use device shared memory

Runtime managed

Detecting implicitly shared variables

❖ Detecting shared variables:
• Since sharing is supposed to happen implicitly, we need to detect the situation

in which a variable is shared.
• A variable is considered shared if its address is stored.
• Avoids passing data from CLANG to LLVM backend about which variables are

shared.
• Limitation: too conservative, might end up sharing more than needed.

18

Local stack

19

❖ Currently only a local stack is used which resides in the prolog of the the function. It
uses:
• SP for generic address space operations.
• SPL for local address space operations.

kernel() {
.local .align 8 .b8 __local_depot[10]

mov.u64 %SPL, __local_depot
cvta.local.u64 %SP, %SPL

add.u64 %rd1, %SPL, 8
ld.local.u64 %rd2, [%rd1]
…
} PTX

Add a shared stack

20

❖ Extend lowering of alloca’s to shared memory using SPSH for
shared address space operations.
kernel() {
.local .align 8 .b8 __local_depot[10]
.shared .align 8 .b8 __shared_depot[10]

mov.u64 %SPL, __local_depot
mov.u64 %SPSH, __shared_depot
cvta.local.u64 %SP, %SPL
cvta.shared.u64 %SP, %SPSH

add.u64 %rd1, %SPSH, 8
ld.shared.u64 %rd2, [%rd1]
…
} PTX

NVPTX backend passes
❖ LowerSharedFrameIndices (new pass for all optimization levels):

• For -O0 insert before stack slot allocation.
• For -O1 or higher insert before StackColoring pass:

- ensures correctness of the stack slot coloring algorithm. Without this, the same local stack
slot may be used by both a local and a shared variable. The StackColoring pass works on
frame indices only.

• Lowers frame indices to use the shared stack pointer SPSH.
• Limitation: uses the same offsets as the local stack frame hence the shared and local stack

frames have the same size.
• Only lowers frame indices which fulfill the following condition:

21

%vreg25<def> = LEA_ADDRi64 <fi#3>, 0;
%vreg6<def> = cvta_to_shared_yes_64 %vreg25<kill>;

%vreg25<def> = LEA_ADDRi64 %VRShared, 32; MI

MI

MI = Machine Instruction

NVPTX backend passes
❖ LowerAlloca (for -O1 or higher):

• Currently: inserts instructions to that convert between the generic and local address
spaces.

• Add: conversion between generic and shared address spaces - the decision to lower to
different address spaces needs to happen at the same time for all address spaces.

❖ FunctionDataSharing (New pass for -O0):
• conversion between generic and shared address spaces

❖ The NVPTXInferAddressSpaces will do the actual lowering by coupling last two instructions

22

%A = alloca i32
store i32 0, i32* %A ; emits st.u32

%A = alloca i32
%Shared = addrspacecast i32* %A to i32 addrspace(3)*
%Generic = addrspacecast i32 addrspace(3)* %A to i32*
; the following instruction emits: st.shared.u32
store i32 0, i32 addrspace(3)* %Generic LLVM-IR

LLVM-IR

Performance - data volume

❖ When sharing variables, the shared memory volume that the
scheme requires is relatively low.

❖ In most cases register usage becomes a problem before
data sharing does.

23

Performance - data volume

❖ Sharing arrays does not increase register pressure.
❖ Shared memory usage can limit occupancy in this case.
❖ Shared memory is not enough …

24

Limitations & future work
❖ Limitations of the new data sharing scheme:

• No communication from CLANG to LLVM about OpenMP:
CUDA and OpenMP offloading share the same toolchain,
distinguish between the two.

• Shared memory is limited: adopt one of the more generic
sharing alternatives for cases in which shared memory is
insufficient or inefficient due to occupancy.

• Support for recursive functions
• Support second level of sharing among WORKERS:

currently the new data sharing infrastructure only supports
sharing from MASTER to WORKERS.

❖ These limitations do not apply to the current data sharing scheme.
25

Future work: sharing among workers

26

void test(){
 int c = 5000;
 #pragma omp target
 {
 c += 1;
 #pragma omp parallel for
 for (i) {
 int d;
 d = c * i;
 #pragma omp simd
 for (j) {
 B[j] = d * j;
 }
 }
 c += 2;
 }
}

Putting it all together
❖ Addition of a shared memory scheme compatible with the

current code generation scheme:
• we modified the runtime to share values from MASTER to

WORKER threads.
• we modified CLANG’s code generation to support our

data sharing convention.
❖ Sharing relies on variables being stored in a “shareable”

memory address space on the device:
• we modified LLVM’s NVPTX Backend to support the

lowering of shared variables to the GPU’s shared
memory.

27

Thank you for listening!
Questions?

Changes to LLVM’s NVPTX Backend
• There are 4 alternative ways for lowering a shared variable:

1.lower alloca to local memory - no sharing needed;

2.lower alloca to shared memory - one instance of the
shared variable per team, store variable in shared
memory stack, limited by shared memory size;

3.lower alloca to global memory - one instance per team
but in global memory, no more team-level management
of the variable, vulnerable to recursive functions;

4.lower alloca to runtime-managed memory - use a global
memory stack managed by the runtime, supports all
cases, interactions with runtime are expensive.

29

