IBM T] Watson Research Center - Advanced Compiler Technologies

Implementing implicit
OpenMP data sharing on
GPU S IBM Research

Team:

Gheorghe-Teodor (Doru) Bercea, Carlo

Bertolli, Hyojin Sung, Arpith C. Jacob, 17
Alexandre Eichenberger, Georgios Rokos, |

Alexey Bataev, Tong Chen, Kevin O’Brien. hpc

connects,

Gheorghe-Teodor Bercea

Denver,CO

Overview

+ |ntroducing an “upstream-able” data sharing scheme for
CLANG/LLVM trunk.

+ We cover only the first level of sharing: from one thread to
the rest of the threads in the same OpenMP team.

+ Qvercoming the problem that:

“In certain use cases, OpenMP’s default sharing of local
variables is incompatible with the default allocation into
local memory of local variables on NVIDIA GPUSs.”

void test(){

int ¢ = 5000;
#pragma omp target
{

c += 1;

#pragma omp parallel for
for (1) {

A[i] = ¢ * 1i;

}

OpenMP allows nesting of regions with different numbers of threads.

volid test(){

int ¢ = 5000;
#pragma omp target
{
OPEHMP c += 1; 1 thread
. #pragma omp parallel for
semantics for (i) {
A[i] = c * 1; all threads
}
}

void test(){

5000;
#pragma omp target

int c

We need to -+— 1; 1 thread
#pragma omp parallel for
share “c” for (i) {
Al[1i] =* i; all threads
}
}
}

void test() {

5000;
#pragma omp target

Default NVPTX |

int c

backend policy: [c|+=1; 1 thread
u 5s allocated #pragma omp parallel for
for (1) {

onto the thread
local stack

A[1] =* i all threads

void test() {

5000;
#pragma omp target

Default NVPTX |

int c

backend policy: [c|+=1; 1 thread
u 5s allocated #pragma omp parallel for
for (1) {

onto the thread
local stack

A[1] =* i all threads

}

On GPUs threads cannot share a variable allocated on the local stack.

+ |n general: OpenMP regions delimited by different
constructs will be outlined.

+ The master thread assigns those regions to workers
dynamically: we therefore avoid dynamic thread launch
in favor of dynamic work allocation to existing threads.

+ Qutlining ensures that all parallel OpenMP regions have
access to all the worker threads including OpenMP regions
that are defined in other compilation units.

+ Data must be shared across multiple functions.
s

volid test(){

int ¢ = 5000;
#pragma omp target

{
c += 1; MASTER
#pragma omp parallel for
for (1) {
A[i] = c * 1; WORKERS
}
c 4= 2; MASTER

—
—

Changes to CLANG and the runtime ZE=

+ The runtime maintains a list of references to the shared
variables.

+ The MASTER region needs to initialize this list.

+ The WORKER region retrieves the list from the runtime and
passes the arguments to the outlined parallel region (in the
expected order).

Code generation for MASTER (1) -

define void @KERNEL(132* dereferenceable(4) %c)/{
entry:

3c.addr = alloca 132*, align 8

tshared args = alloca i8**, align 4

br 11 %1, label %.worker, label %.mastercheck
.worker:

call void @WORKER()

br label %.exit
.mastercheck:

br 11 %5, label %.master, label %.exit
.master:

. [only master thread left] LLVM-IR

Code generation for MASTER (2) -

.master:
call void @ kmpc kernel init(i32 %thread 1imit6)
call void @ kmpc kernel prepare parallel(
[..], 18*** %shared args, 132 1)
= load i8**, i8*** %shared args, align 8
= getelementptr inbounds i8*, i8** %17, 164 O
= bitcast 132* %1 to i8*
store 18* %23, i8** %22, align 8
call void @Qllvm.nvvm.barrierO()

call void @llvm.nvvm.barrierO()
LLVM-IR

_Code generation for WORKER (1) 2=

define void @WORKER(132* dereferenceable(4) %c)/{
entry:

$*shared args = alloca 1i8**, align 8

br label %$.await.work
.awalt.work:

call void @llvm.nvvm.barrierO()

%0 = call 11 @ kmpc kernel parallel(

18** %work fn, i8*** %shared args)

.execute.parallel:

%5 = load 18**, i8*** %shared args, align 8

call void @ omp outlined wrapper (

116 0, 132 %master tid, 18** %5) LLVM-IR

_Code generation for WORKER (2) ===

define void @ omp outlined wrapper(.., i8#*%*){

entry:
%c.addr = alloca i32*, align 8
store i8** %2, i8*** %.addr2, align 8
next:
%3 = load 18**, 18*** %.,addr2, align 8
0 = getelementptr inbounds i8*, i8** %3, i64 O
1l = bitcast i8** %10 to i32*%*
%12 = load i32*, 132** %11, align 8
call void @ omp outlined(.., 1i32* %12)

ret void

LLVM-IR

ing OpenMP to GPUs

volid test(){
int ¢ = 5000;

allocated in the #pragma omp target

MASTER thread’s {
local memory by default, ___ | ~ 4= l; // LLVM-IR: %c = alloca i32
BUT
st now be #pragTa omp parallel for
“shareable” for (1) {
with the WORKERS! A[i] = ¢ * i;
}
c += 2;

1. In the CUDA model shared variables must be explicitly declared as _ shared_ .
2. On a GPU, variables allocated in local memory cannot be shared.

1. No Sharing

Global Memory

| | Team Team

Shared Memory

Shared Memory

Shared Memory

. o . . .

Workers Master Workers Master Workers Master

- Global memory - Shared memory - Local memory

2. Use device shared memory

Global Memory

Shared Memory

1

Py |

L d - - L4 1

- - . I'
Pt ° R shared_args
L d s . "
> - ¢

shared_args BN shared_args

Workers

Master

Shared Memory

1

1

e - 4 L

Phg - l'
P - Re shared_args
e - "
[- ¢

shared_args N shared_args

Workers

Master

Team

Shared Memory

L 4 - - 4
- - L4
- L4
e’ 24
Phg 4
e’ L4
L 4 - L4
3 - ’
shared_args JEICEEN shared_args

Workers

Master

- Global memory - Shared memory - Local memory

" Runtime managed

Detecting implicitly shared variables

+ Detecting shared variables:

- Since sharing is supposed to happen implicitly, we need to detect the situation
in which a variable is shared.

- Avariable is considered shared if its address is stored.

- Avoids passing data from CLANG to LLVM backend about which variables are
shared.

- Limitation: too conservative, might end up sharing more than needed.

| .ocal stack

« Gurrently only a local stack is used which resides in the prolog of the the function. It

USES.

- SP for generic address space operations.

- SPL for local address space operations.

kernel () {
.local .align 8 .b8 @ local depot[1l0]

mov.u64 3SPL, @ local depot
cvta.local.u64 %SP, 3SPL

add.u64 %rdl, %SPL, 8
ld.local.u64 trd2, [%rdl]

Add a shared stack

+ Extend lowering of alloca’s to shared memory using SPSH for
shared address space operations.

kernel () {

.local .align 8 .b8 @ local depot[1l0]
.shared .align 8 .b8 shared depot[10]

mov.u64 3SPL, @ local depot

mov.u64 3SPSH, shared depot
cvta.local.u64 %SP, %SPL

cvta.shared.u64 %SP, %SPSH

add.u64 %rdl, %SPSH, 8
ld.shared.u64 3rd2, [%rdl]

NVPTX backend passes

+ LowerSharedFramelndices (new pass for all optimization levels):

- For -O0 insert before stack slot allocation.

- For -O1 or higher insert before StackColoring pass:
- ensures correctness of the stack slot coloring algorithm. Without this, the same local stack

slot may be used by both a local and a shared variable. The StackColoring pass works on
frame indices only.

- Lowers frame indices to use the shared stack pointer SPSH.

- Limitation: uses the same offsets as the local stack frame hence the shared and local stack
frames have the same size.

- Only lowers frame indices which fulfill the following condition:

Svreg25<def> = LEA ADDRi64 <fi#3>, 0

svreg6<def> = cvta to shared yes 64 %vreg25<kill>; MI

$vreg25<def> = LEA ADDRi64 %VRShared, 32; Mi

MI = Machine Instruction

NVPTX backend passes

+ LowerAlloca (for -O1 or higher):

- Currently: inserts instructions to that convert between the generic and local address
spaces.

- Add: conversion between generic and shared address spaces - the decision to lower to
different address spaces needs to happen at the same time for all address spaces.

+ FunctionDataSharing (New pass for -O0):

- conversion between generic and shared address spaces

+ The NVPTXInferAddressSpaces will do the actual lowering by coupling last two instructions

alloca 132

= addrspacecast 132* $A to 132 addrspace(3)*
= addrspacecast 132 addrspace(3)* $A to 132*
the following instruction emits: st.shared.u32
store 132 0, 132 addrspace(3)* %$Generic LLVM-IR

Performance - data volume

Number of Static shared Dynamic global Shared
variables | memory per team | memory per team | Registers | Teams/SM | memory per SM
[Bytes] [Bytes] [Bytes]
1 233 0 36 14 3262
2 241 0 36 14 3374
4 257 0 36 14 3598
8 289 0 36 14 4046
16 353 0 40 12 4236
32 481 256 72 7 3367
64 737 512 136 3 2211

+ When sharing variables, the shared memory volume that the
scheme requires is relatively low.

* In most cases register usage becomes a problem before
data sharing does.

Performance - data volume

Number of | Array data Static shared Potential Shared Actual
variables shared memory per team | Registers | Teams/SM | memory per SM | Teams/SM
[Bytes] [Bytes] [Bytes]
1 384 617 36 14 8638 14
2 768 1001 36 14 14014 14
3 1152 1385 36 14 19390 11
4 1536 1769 36 14 24766 9

+ Sharing arrays does not increase register pressure.
+ Shared memory usage can limit occupancy in this case.

+ Shared memory is not enough ...

Limitations & future work

“ Limitations of the new data sharing scheme:

- No communication from CLANG to LLVM about OpenMP:
CUDA and OpenMP offloading share the same toolchain,
distinguish between the two.

- Shared memory is limited: adopt one of the more generic
sharing alternatives for cases in which shared memory is
insufficient or inefficient due to occupancy.

- Support for recursive functions

- Support second level of sharing among WORKERS:
currently the new data sharing infrastructure only supports
sharing from MASTER to WORKERS.

+ These limitations do not apply to the current data sharing scheme.

Future work: sharing among workers Z

void test(){
int ¢ = 5000;
#pragma omp target
{
c += 1;
#pragma omp parallel for
for (1) {
int d;

d =c * 1;

#pragma omp simd

for (3) {
B[J] =d * J;
}
}
c += 2;
}
}

+ Addition of a shared memory scheme compatible with the
current code generation scheme:

- we modified the runtime to share values from MASTER to
WORKER threads.

- we modified CLANG’s code generation to support our
data sharing convention.

+ Sharing relies on variables being stored in a “shareable”
memory address space on the device:

- we modified LLVM’s NVPTX Backend to support the

lowering of shared variables to the GPU’s shared
memory.

Thank you for listening!
(Juestions?

Changes to LLVM’s NVPTX Backend ,

- There are 4 alternative ways for lowering a shared variable:
1.lower alloca to local memory - no sharing needed,;

2.lower alloca to shared memory - one instance of the

shared variable per team, store variable in shared
memory stack, limited by shared memory size;

3.lower alloca to global memory - one instance per team
but in global memory, no more team-level management
of the variable, vulnerable to recursive functions;

4.lower alloca to runtime-managed memory - use a global
memory stack managed by the runtime, supports all

cases, interactions with runtime are expensive.

